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Abstract

Adaptation to the initial weight set of a neural net-
work and morphological disruptions is studied in a
simple simulated model of phototactic behaviour. To
achieve this adaptivity, a homeostatic neural controller
is used. A salient feature of the controller is that local
plastic adaptive mechanisms work only when neural
activations move out of a prescribed region. This idea
aims at creating a high dimensional bounded set in
phase space that corresponds to neural homeostasis
linked to suitable performance. An evolved homeo-
static controller shows no dependence on the initial
weights and adaptivity to the morphological disrup-
tions. keywords : homeostatic adaptation, learning,

plastic neural network, evolutionary robotics

1 Introduction

Homeostatic neural controller has been originally
proposed by Di Paolo [1] and is extended to other
models in terms of application to a legged robot [2],
increasing a sensitivity of the homeostatic neural con-
troller with a different form of a plastic function and
variable biases [3], and exploring minimal dynamics of
behavioural preference as a model of autonomy [4].

The idea of the homeostatic neural controller is
based on an ultrastable system proposed by Ashby [5],
which is a system that will tend to change its own con-
figuration plastically whenever stability is lost, until it
finds a new internal dynamics which will make the sys-
tem stable under the new conditions. In the Di Paolo’s
original work of the homeostatic neural controller in-
spired by this system, a local plastic adaptive mech-
anisms that change synaptic weights work only when
neural activations move out of a homeostatic region
that is defined in advance by a designer. The plastic-
ity keeps working until the activations return to the
region. Such a mechanism has been implemented in a
neuro-controlled simulated vehicle evolved with a fit-
ness function rewarding phototaxis and the mainte-
nance of neural activations within the homeostatic re-
gion. The use of intermittent plasticity in combination

with a selective pressure makes an association between
the homeostasis and a desired behaviour. Once the
neurocontroller gives rise to behavioural coordination
within a given environmental situation that results in
internal stability, synaptic weight changes no longer
happen. If the situation changes, such as in an inver-
sion of the visual field or some other perturbations,
this causes a breakdown of coordination. As this hap-
pens, the local adaptive mechanism is activated until
it finds a new structure (synaptic weight values) which
can sustain the activations within the homeostatic re-
gion and re-form the behavioural coordination. As
a result, the agent can adapt to perturbations it has
never experienced before.

The homeostatic neural controller provides a novel
kind of coupling between internal and environmental
dynamics. It is not a simple static sensor-motor cou-
pling but rather a dynamical creation of sensor-motor
coupling that gives rise to behavioural coordination.
However, in the original work, there are several diffi-
culties that should be overcomed to shape the notion
of dynamical creation view. One is a dependency to
the initial weight values which were sensitive param-
eters as initial configuration of learning. Another is
a difficulty of the re-adaptation to environmental sit-
uations. The reasons of the difficulties are because
a model setting of the plastic rule and the upper- or
lower-bound of the weight values tend to make the dy-
namics converge, and because the homeostasis is not
always associated with a desired behaviour. In the
original work, only a combination of homeostasis and
a desired behaviour is associated using the evolution-
ary technique. Therefore, some undesired behaviours
can also keep homeostasis in neural activations while
behaving.

In this paper, we propose an extended homeostatic
neural controller and evolutionary ways that can more
strongly develop an association between homeostasis
and a desired behaviour. As a result, it will be shown
that the proposed method can adapt to the various ini-
tial weight values and that can re-learn environmental
situations.
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2 Model

Our proposing method is implemented in a simu-
lated mobile agent with a plastic neural controller.
The simulated robot is faced with a single light source.
The task of the agent is to approach the light source.
Different from conventional studies, a set of weights of
a neural controller is given randomly at the beginning
of a trial. The agent needs to adapt to a new weight
set from the experience of a sensory-motor coupling
through an interaction with environment.

Agent. An agent is modelled as a simulated
wheeled robot with a circular body of radius 4 and
two diametrically opposed motors. The motors can
drive the agent forwards in a 2-D unlimited plane.
The agent has four light sensors mounted at angles
±π/4,±3π/4 radians to the forward direction. Light
from point sources impinges on sensors with a local
intensity proportional to the source intensity and the
inverse of the distance from sensor to source. The
model includes the shadows produced by the agent’s
body.

Plastic controller. A fully connected continuous-
time recurrent neural network (CTRNN) [6] is used
as the agent’s controller. The equations are modified
from the ordinary form in order to avoid that unde-
sired behaviours, i.e., going away from the light, can
generate homeostasis. Therefore, CTRNN needs to
have a property that going-away behaviours will cause
a same consequence that breaks homeostasis. To re-
alize it, two parameters, α and β, are added in the
equations. The time evolution of the states of neurons
is expressed by:

τiẏi = −yi +

N∑

j=1

α sin(wji)zj(yj) + β + Ii, (1)

zi(x) = 1/(1 + e
−x), (2)

where yi represents the cell potential of neuron i, zi

is the firing rate, τi (range [0.1, 10]) is its time con-
stant, Ii represents the sensory input, which is given
to only sensory neurons, and α sin(wji) determines the
strength of the connection from the neuron, j, to i. α is
a constant given genetically, which decides how much
the pre-synaptic neurons can affect post-synaptic neu-
rons. β becomes the equilibrium point unless neither
input nor stimulus from the other neurons are given.
β is fixed to −5 in this paper. A balance of two pa-
rameters, α and β, become very important, because
if α is too small, the firing rates converge to almost
0, and if it is too big, β does not affect the dynam-
ics so much. Therefore, with appropriate α, the firing
rates converge unless there is enough stimulus from
the sensors. and the CTRNN can produce a variety

of behaviours near the light source. The use of this
property in combination with an evolutionary tech-
nique will prohibit developing the association between
going-away behaviours and homeostasis as explained
later.

In the previous studies, the firing rate and the
synaptic weights tend to converge to a maximum or
minimum values where the learning mechanism cannot
work anymore or does not cause a qualitative differ-
ence. To overcome this problem, the proposed model
use the sin function in the effect of weights.

The connection weights between neurons, wij , are
randomly determined at the beginning of a trial and a
plastic mechanism allows for the lifetime modification
of the connections. A homeostatic region is described
by a plasticity function of the firing rate of the post-
synaptic neuron with a parameter, γ. Weights from
neuron i to j are updated according to :

∆wij = ηij(1 − zi)p(zj), (3)

p(x) =

{
0 x > γ

1 − x/γ else
(4)

where zi and zj are the firing rates of pre- and post-
synaptic neurons, respectively, ∆wij is the change per
unit of time to wij , ηij is a rate of change (range
[−1, 1]), which is genetically set for each connection,
and p(x) is the plastic function that defines the home-
ostatic region. The reason why this is called homeo-
static is that if zj is more than γ, the weight connec-
tion does not change. Otherwise, the plasticity works
and the weight connection keeps changing until zj is
stabilized in the homeostatic region (more than γ).

3 Evolutionary setup

A population of agents is evolved using a rank-based
genetic algorithm with elitism. All fixed network pa-
rameters, τi, ηij , α, γ and the gains are represented
by a real-valued vector ([0,1]) which is decoded lin-
early to the range corresponding to the parameters
(with the exception of gain values which are exponen-
tially scaled). Crossover and vector mutation opera-
tors, which adds a small random vector to the real-
valued genotype, are used [7].

In the evaluation process, half of trials start with
the light source and without the light in another half.
The light condition consists of the serial presenta-
tion of 8 distant light sources which the agent must
approach and remain close to. Only one source is
presented at a time for a relative long time period,
1000. In the dark condition, there is no light in the
arena. It means that no stimulus is given to the net-
work. The agent can freely move in the unlimited
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arena for the same time length as the light condition
while it is required not to be homeostatic, that is,
the network needs to maintain the dynamics outside
homeostatic regions. The evaluation under this condi-
tion is expected to evolve the networks that have an
association between going-away behaviours and non-
homeostasis. Therefore, the agents are evaluated by
measuring three factors such as the proportion of time
that the agent spends near the light source, fs, the
time-averages of the proportion of neurons that have
behaved homeostatically in the light condition, fh, and
that have not behaved homeostatically in the dark
condition, fNh. The fitness function is given by this,
F = fs ∗ fh + avg.(fs) ∗ fNh.

4 Results

The population can be successfully evolved by 4000
generations. After that, the fitness values does not
change so much. We selected one successful agent at
the 4000th generation in order to investigate the po-
tential of the adaptivity that the agent has by follow-
ing experiments.

4.1 Creation of sensory-motor coupling

The evolved agent can generate the phototactic be-
haviour in most cases even if the weight connections
are randomly initialized at the beginning of the trial.
The evolved agent constructs a new sensory-motor
coupling through the experience of interaction with
the environment. Examples of the established photo-
tactic behaviour (distances to the light source) and the
changes of the weight connections are shown in Fig. 1
and Fig. 2. At the beginning of the trials, the weight
connections are randomly given so that the produced
behaviour cannot be approaching to the light source.
If little light stimulus is provided, the network cannot
maintain the neural dynamics in the homeostatic re-
gions. This property is evolved by the fitness function
of the dark condition. Following the plastic rules, the
network starts changing the network structures that
can lead to homeostasis and phototaxis at the same
time. As shown in figures, the agent with different ini-
tial weight sets can successfully establish the phototac-
tic behaviour and homeostasis in both cases. Interest-
ingly, those converged weight values are very different.
It means that the established sensory-motor coupling
is dynamically constructed through the interaction.

4.2 Adaptation to the sensory inversion

The adaptation to the sensory inversion is exam-
ined. Since the agent has 4 sensors in the current
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Figure 1: Left: Distance from robot to sources. Each
source lasts for 1000 time steps. Right: Change of
synaptic weights corresponding to the same run of the
left. For the clarity, only three of weights are shown.
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Figure 2: Another result of distances(left) and
weight(right) changes starting from a different initial
weight set from Fig.1.

setting, each pair of diagonal sensors are swapped
(±π/4 ↔ ∓3π/4) so that the agent “sees” the light
source at an opposite direction in terms of back/forth
and left/right.

After an initial period with normal positions of
sensors, the swapping experiment is tested. Figure
3 shows the distances from the agent to the light
sources. The light sources appear at a new place in
every 1000 steps and the sensors are swapped when
the 13th light source appears. As shown in the pre-
vious section, the adaptation to the initial weight set
happens before swapping sensors. When the sensors
are swapped, the agent moves to an opposite direction
by the sensor-motor coupling learned through normal
embodiment. However, expected input stimulus can-
not be achieved because the agent goes away from the
light. That causes breakdown of internal homeostasis
and then the synaptic plasticity starts working. After
some adaptation processes, the network has been able
to find a new homeostatic state that can approach the
light. Once the proper new sensor-motor coupling has
been established, the synaptic weight becomes stable
(Fig. 4).

Re-learning is also tested in the way that the sensors
are swapped at 13th light source and their positions
are back to the original positions at 30th light. It is
observed that the agent can successfully recover the
phototaxis to the perturbations through the learning
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phase (not shown).
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Positions of sensors are swapped.

Figure 3: Distance from robot to sources. The vertical
dashed line shows onset of swapping diagonal sensors
(±π/4 ↔ ∓3π/4). All initial configurations are same
as Fig. 1.
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Figure 4: Synaptic changes corresponding to Fig. 3.

5 Conclusion

We showed a novel way of adaptation to unexpe-
rienced perturbations such as sensory inversions and
adaptation to the random initial weights. In the con-
ventional neural network modelling in evolutionary
robotics, the sensory-motor connections as a low level
description are tightly related to the behavioural per-
formances as macro observations. In our model, the
sensory-motor connections are randomly determined
at the beginning so that the tight connection between
low-level dynamics and behavioural performances can-
not be created. Instead, the sensory-motor connection
is reconfigured to maintain the higher-level homeosta-
sis, which is associated with the desired behaviours.
At the same time, the neural network is evolved to
make it difficult for undesired behaviours to main-
tain homeostasis as a network property. Therefore,
the bottom-up construction from the sensory-motor
dynamics and the top-down regulation from the be-
havioural performances are mutually coupled and the

structure makes the homeostatic neural network more
adaptive.
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